Dealing with Disasters Locally

Dealing with disasters must be addressed at all levels, from individuals and their families to global networks and organisations. Europe supports such activities. From European Commission work on cross-border emergency response to promoting individual actions to support one’s community. To a large degree, people in a locality know their environment and society, so they understand which measures to undertake with whom and how. Naturally, community-based work is not a panacea. Limitations include groups marginalised due to racism and sexism along with ignorance of social and environmental conditions due to limited resources and external experience. Thus, local and non-local contributions must be combined as a partnership, so that neither top-down nor bottom-up approaches dominate. Community-based teams are one example that has achieved success around the world.

Community Teams

Community Disaster and Sustainability Teams

Many disaster teams originate in the desire to respond to disasters after they have occurred, in order to give first aid, to rescue trapped people, and to fight fires. Additionally, disaster teams should be trained for and involved in pre-disaster activities. That not only helps to reduce impacts when a disaster happens, but also maintains skills and team cohesion in the absence of practice in responding. These tasks often extend beyond the standard remit of ‘Disaster Teams’, into more comprehensive ‘Sustainability Teams’.

Many disaster teams undertake tasks such as:

- Increased energy independence where disasters knock out power lines or disrupt supply systems.
- Prevents litter from blocking drains and causing localised flooding during extreme rainfall.
- Increased food independence if disasters block transportation routes.
- Knowing who the most vulnerable people are and the form of post-disaster assistance they will need.

Energy demand reduction and implementation of small-scale, decentralised supply sources, including regular work to trim trees to keep them from falling on power lines or buildings.

Picking up litter from streets and keeping waterways and drains clean.

Creating and maintaining communal gardens for growing fruit and vegetables and for bee keeping.

Regularly visiting and assisting with chores for elderly people or people with disabilities.

Sustaining such Teams

We know that natural hazards cannot be entirely avoided or prevented, yet we also know that their damage and disruption can be reduced. Civil protection assists with that. It is frequently becoming increasingly specialised and structured. As noted in 1998 by Jon Boura from the Country Fire Authority in Melbourne, Australia: “In days of extreme danger, [...] (we) cannot guarantee protection to each property. On such occasions the key to community safety is the preparedness and response of the residents threatened”.

Examples of actions to achieve trained, effective, and successful Disaster Teams and Sustainability Teams working with civil protection are:

1. Regular public workshops and training events to educate and develop the skills of the community and to foster close work with civil protection, as a partnership. Training and teaching topics include not only fire management, first aid, and light search and rescue but also keeping communities clean and using local resources for food, water, and energy.

2. Regular community activities, such as conducting and publicising vulnerability assessments—and then acting on the results to improve the situation—along with cleaning up parks and gardens.

That reduces the disaster-affected population’s isolation, supports civil protection before and after a disaster, and empowers communities to help themselves over the long-term.

Team Examples

Characteristics of a Disaster-resilient Community

www.preventionconsortium.org/?pagelid=90

Community Disaster Volunteer Training Program (Turkey)

www.ahelp.org/ev/egitim5_0e.htm

Teen School Emergency Response Training (USA)

www.cert-la.com/links/teensert.htm

Selected Literature

Bajek et al., 2007, Natural Hazards, 41(3): 281-292
Chen et al., 2006, Natural Hazards, 37: 289-303.